Requirements for Promoting a New Scientific Theory

25 04 2013

I have been reading some pretty strange stuff this week about Gravity recently. It seems there are some pretty odd folk out there who have taken thinking about physics to a new, possibly unhealthy, level.

Gravity: It's the Law

Basically, they are crackpots. Well I guess it’s a slippery slope – one day you wonder why the earth is sucking down on you, the next you decide to spend some time on the knotty question. Soon enough you think you’ve got it, it is clearly that the earth is absorbing space which is constantly rushing down around us dragging us with it. Or similar.

So yes, its true, Einstein did not ‘solve’ Gravity, and there is still fame and fortune to be had in thinking about gravity, so this is the example I shall use today.

The trouble with Gravity is that Einstein’s explanation is just so cool! He explained that mass warps space and that the feeling of being pulled is simply a side effect of being in warped space. It sounds so outlandish, but also so simple, that it has clearly encouraged many ‘interesting’ people to have a crack at doing a better job themselves.

So, as a service to all those wannabe physics icons, I offer today a service, in the form of a checklist – what hoops will your new scientific theory have to jump through to get my attention, and that of the so-called ivory tower elite in the scientific community?

Requirement 1: Your theory needs to be well presented

presentation counts!Yes, it may sound elitist to say, but your documentation/website/paper/video should have good grammar. Yes, yes, one should not use the quality of one’s english to judge the quality of one’s theory, and I know prejudice is hard to overcome, but this is not my point. My point is that in order to understand a complicated thing like a physics theory it needs to be unambiguous. It needs to be clear. It needs to use the same jargon the so called ‘elite’ community uses. Invented acronyms, especially those with your own initials in them, are out.

Requirement 2: Your proposal needs to be respectful

Image courtesy of Wikimedia Commons

Image courtesy of Wikimedia Commons

Again, this is not about making you bow to your superiors in the academic world. Indeed in the case of Gravity, the physics community is one of the most humble out there. While I agree academia is up it’s arse most of the time, this is about convincing the reader that you know your stuff. In order to do that, you need to show that you know ‘their stuff’ too. If you have headings like “Einstein’s Big Mistake” it is a bit like saying to the reader ‘you are all FOOLS!’ and cackling madly. Don’t do it!

Respect also means you need to answer questions ‘properly’. That means clearly, fully, and in the common language of the community. You cannot say “its the responsibility of the community to test your theory”. This is a great way to piss people right off. It is your responsibility to make them want to. This usually means dealing with their doubts head-on, and if you can do that, I promise you they will then want to know more.

Requirement 3: You need to develop credibility

Sorry, as you can see we have yet to consider the actual merit of the theory itself. I wish it were not so, but we are humans first and scientists second. We cannot focus our thoughts on a theory if we doubt the payback. And if you say that aliens came and told you the scientific theory, then people are unlikely to keep listening, unless, perhaps they’re from Hollywood.

But seriously, credibility is the hidden currency of the world, it opens doors, bends ears and gets funds. It takes professionals decades to build and it is really rather naive to waltz into a specialism and expect everyone to drop their tools and listen to you.

That said, the science world is full of incomers, it is not a closed shop as some would you believe. If you follow requirements 1 and 2, and are persistent (and your theory actually holds water) then you are very likely to succeed.

Penrose_triangleRequirement 4: Your theory needs to be consistent

I have seen some pretty strange stuff proposed. Gravity is a manifestation of the flow of information, or the speed of light is determined by a planet’s density. Find your own at crank.net. Let’s look at this peach as an example: http://www.einsteingravity.com/.

This exhibit is great example of how not to go about promoting your theory. “Monumental   Scientific   Discovery  !” it screams across the top, then the first claim is this:

1) The Acceleration of earth’s Gravity x earth orbit Time (exact lunar year) = the Velocity of Light.
(9.80175174 m/s2 x 30,585,600 s = 299,792,458 m/s)

Now this is rather remarkable. Can it really be that you can calculate the speed of light to 9 significant figures from just the earth’s gravitational acceleration and the length of a year? Intuitively I suspect you could (eventually), but then I started to think, well, what if the earth was irregularly shaped? The gravitational constant is actually not all that consistent depending on where you are either. So I checked, then I noticed he said ‘lunar year’. What? Why? What is a lunar year? Then I calculated that the time he used was 354 days, which isn’t even a lunar year. Add to that that he gives the acceleration of gravity on earth to 9-figures despite the fact that nobody knows it that well (like I said it is location dependent). Does he does the same test for other planets? No. Well what if they have no moon!

So, 0/4 for on our checklist for einsteingravity.com!

Requirement 5: The theory needs to be be consistent with well-known observationsevidence

Now if your theory has got past requirements 1-4 , well done to you, you will be welcome to join my table any time. Now is when you may need some more help.

Once a theory is consistent with itself, it now needs to agree with what we see around us. It needs to explain apples falling, moons orbiting, light bending and time dilating. This is the hardest part.

It cannot leave any out, or predict something contrary to the facts. It cannot be vague or wishy-washy. It needs the type of certainty we only get from the application of formal logic – and that old chestnut – mathematics.

No you cannot get away without it, there is no substitute for an equation. Equations derived using logic take all the emotion out of a debate. And they set you up perfectly for requirement #5.

crystal-ballRequirement 6: The theory needs to make testable predictions

If your theory has got past the 5 above, very nice job, I hope to meet you one day.

We are all set, we have a hypothesis and we can’t break it. It has been passed to others, some dismiss it, others are not so sure. How do you create consensus?

Simple, make an impressive prediction, and then test that.

Einsteins field equations for example, boldly provide a ‘shape’ of space (spacetime actually) for any given distribution of mass. With that shape in hand you should then be able to predict the path of light beams past stars or galaxies. These equation claimed to replace Newton’s simple inverse square law, but include the effects of time which creates strange effects (like frame dragging), which, importantly could be, and were, tested.

The beauty of these equations, derived via logical inference from how the speed of light seems invariate, and now proven many times, is that they moved physics forward. Rather than asking, ‘what is gravity’, the question is now ‘why does mass warp space’. It’s a better question because answering it will probably have implications far beyond gravity – it will inform cosmology and quantum theory too.

Conclusion

So if you are thinking of sharing with the world at last your immensely important insights, and want to be listened to, please remember my advice when you are famous and put in a good word for me in Stockholm. But please, if, when trying to explain yourself, and are finding it tough, please please consider the possibility that you are just plain wrong…

————-

Jarrod Hart is a practicing scientist, and wrote this to shamelessly enhance his  reputation in case he ever needs to peddle you a strange theory.

Further reading:





Quote of the day:

22 05 2012

“A theory is something nobody believes, except the person who made it. An experiment is something everyone believes, except the person who made it.” – Albert Einstein





Big Pharma: Heroes or Villains?

25 12 2011

What is ‘Big Pharma’?

Many people have argued that alternative and complimentary medicines are suppressed because they threaten the status quo for ‘big pharma’.  Before we accept this claim, let’s unpack the idea of big pharma a little to understand the incentives at play and when it may be right not to trust big pharma.

Let me start by making it clear – big pharma, as a label for the largest pharmaceutical companies, deserves a healthy dose of outrage; but before we toss the baby out with the bathwater, but lets see when – and why.

Big pharma is just another name for ‘big business’: a big business is an organism that has grown beyond the people that founded it, such that rather than having emotions, conscience or guilt, it has KPI’s like turnover, cashflow and return on investment. Big pharma is in the business of making money and as such should generally be expected to default to that option unless constrained by law. The collective conscience of shareholders only tends to kick in when dirty laundry is put out on show. Ok, so firstly, I think we can agree, a business is not a charity.

Next we take this lack of compassion and combine it with size and complexity – we see we now have an organism susceptible to plain outright crookery – from the white collar sort, like insider trading – to the very tangible – such as the dumping of toxic waste. These practices usually require the corruption of people – but not always – it is very easy for companies to do bad things without any individuals having malicious intent; it could simply be negligence or incompetence, or it could simply be that profit sometimes comes before fairness.

Take for example the problem of selling DVD’s in the world market. They are small and lightweight and easy to ship worldwide. This usually means that the price would be similar worldwide, if dealers in one country were to raise prices, residents would simply import the product. However, the enormous wealth differentials that exist between, say, the USA and Mexico, mean that the company could set a high price to extract maximum value from the US market, but then essentially price themselves out of the Mexican market. If they lowered the price, they would sell more product but with much reduced profit margins.

This problem is thrown into stark relief in the case of drugs, where the most profitable option is often to cater to the richer countries. This is sound business – set your price high, keep your factory trim, reduce shipping costs, keep high margins. However, if the drug can radically improve health outcomes, this policy could be seen as unethical.

This is the sort of problem big pharma face routinely; they are not selling entertainment, they are sometimes selling life itself, and often find they need to play profits against ethics in they way I describe above. It is thus hardly surprising that the general public have a distrust and general suspicion toward Big Pharma. In addition to drug import controls, there are many other situations where governments have had to step in to ensure the pharmaceutical companies ‘do the right thing’, such as the case with antiretroviral drugs (for HIV) coming into Africa.

Now think for a moment on this thought experiment: what would happen if a small publicly traded company discovered a cheap and easily reproducible cure for cancer? Would they really be able to hold on and extract full value for their shareholders? History actually suggests they wouldn’t – the drug would become public property, or would simply be nationalised if the company tried to resist. Inventions like the major vaccines and the first antibiotics were often not patented, and we see if we look at the pharmaceutical industry that their biggest profits come predictably not from miracle cures but from drugs that cater to the maladies of the richer classes. The top targets are heart disease, heart-burn, stroke, mental health and asthma. Once you  add disorders like diabetes you have accounted for the most profitable chunk of the industry.

This trend raises fresh concerns, because there are many severe ailments that are simply not attractive to profit making operations, the poster-boys being malaria, TB and HIV/Aids. Drug companies can be bullied into doing work in these areas, but it tends to fall to governments and charities to fund research in the afflictions of the poor, or on the so-called ‘orphan diseases’ – ailments that affect too few people to ever make a profitable market.

Economists will also argue that profit making businesses, being creatures under the strict control of incentives, will be unlikely to aim for ‘cures’ because cures are ‘one-offs’. While this criticism has some sad validity (in the board-room if not in the clinic), we have to remember that the big drug companies only exist because they make profits; in an imagined world where the first dollars were always spent on the most dire diseases and we only get to do botox and erectile dysfunction once those are all solved we would have no private industry at all, so far fewer trained scientists, far less public knowledge and certainly no map of the genome. We have to remember that to some extent at least, the aging american taking their cocktail of pills every day for the last 50 years has in some sense subsidized the field doctor in rural Africa. Yes, they also subsidized Wall Street excesses, but perhaps it’s a deal worth making.

Publication Bias

Another area where drug companies increasingly in need government intervention is in drug trials; specifically, they are presently allowed to pick and choose what to publish; this sounds OK at first, because, surely, you assume, the drug company has to make a bulletproof case before the drug is licensed? Well, if you do 100 trials, you may well find 50 good results, and publish those, and simply sweep the duds under the carpet. What’s more is those duds could have revealed possible side effects or interactions that could actually turn out to be real issues later on down the road. This is going to be a big one in the next few years.

The Big Picture

When criticizing the pharmaceutical industry it is easy to get caught up in the weeds, for there are weeds, but let’s also try to remember that this century has seen unparalleled improvements in life expectancy world-wide, and the improvements in child mortality in the third world do owe a lot to the sometimes cold-hearted business models intrinsic to western medicine.

Before I move on, and being a scientist, I wanted to make another point about big pharma. While it’s true that big money is involved, we have to remember that the Pareto principle applies here too – the majority of the profits come from the minority of the research. There are legions of perfectly good people, motivated by no more that the desire to help people in distress working in healthcare all around the world. Drugs are highly integrated with other therapies at the clinical level and the people actually running trials ‘in the trenches’ face-to-face with the patients (and often dealing with terrible trauma)  are rarely shareholders in big pharma, and many would not even think for a second they are part of what people would call big pharma. Yet it is they who have gradually built up our current understanding of the human body, not the men in suits.

Conclusion

To me, the idea of executives at the top 5 drug companies has become conflated with the idea of the ‘canon’ of western medicine. The idea that the whole world of ‘proven medications’, the result of countless years of hard graft (and the learnings from millions of deaths), can be dismissed because it’s under the control of ‘fatcats’ is a sick tragedy. Western medicine is simply a name for ‘what has been statistically been proven to help’, and the idea that even a tiny fraction of the scientists who developed it would be working to suppress good ideas from outside the ‘fold’ sounds frankly paranoid. Yes big pharma has some warped incentives that cause it to focus on the wrong things and leave the poor out in the cold, but all for-profit publicly-traded businesses do that! Ask yourself for a minute – even if a cure for heart disease were found that threatened the profits to Pfizer and friends, could they really recruit a worldwide network of conspirators who think a cure for cancer is something worth selling their very souls for to suppress?

It hard enough to run a real business, let alone running one so effectively in complete secrecy in the face of so much scrutiny. If they have that much skill and power, they should go legit, they would make a real killing!





Exceeding the Speed-Of-Light Explained Simply (and the Quantum riddle solved at no extra cost)

27 09 2011

It has recently been in the news that some particle may have exceeded the legal speed limit for all things : 299,792,458 metres per second.

Of course, this will probably turn out to be a bad sum somewhere or perhaps waves ganging up, but the whole hubbub has raised my hackles, and here’s why.

Because Albert Einstein at no time said what they say he said (see here for example). They misunderstand relativity! Things can move at any speed we want, and I will try to explain the fuss now.

So let’s get to it!

==============

First, we have to consider the way space warps when we move.

The problems started when people realised that light always seems to have the same speed, regardless of the speed you were moving when you saw it. This seems to be a contradiction, because surely if you fly into the light ever faster, it will pass you ever faster?

Well the tests were pretty clear, this does not happen. The speed is always c.

For several years, people were unsure why – until they were told by Einstein in 1905. In the meantime, another ponderer of the problem (Lorentz) decided to write down the maths that are required to square the circle.

The so-called Lorentz equations show, unequivocally, that space and/or time need to warp in order for relative speeds of c not to be exceeded, even when two items are going very close to c in opposite directions to one another.

So something needed to give, and it was space and time!

So, newsflash! it was not Einstein that first published on space and time warping. His contribution (along with Henri Poincaré and a few others) was to explain how and why. His special theory showed that because there is no ‘preferred’ frame of reference, a speed limit on light was inevitable. The term ‘relativity’ come from this – basically he said, if everything is relative, nothing can be fixed.

==============

Ok, so we have some nice observations that nothing seems to go faster than the speed of light  – and we have a nice maths model that allows it. So why do I persist in saying things can go faster than the speed of light?

Let me show you…

There is a critical difference between ‘going’ faster than light and being ‘seen to be going’ faster than the speed of light, and that is where I am going with this.

So lets take this apart by asking how we actually define speed.

If a particle leaves point a and then gets to point b, we can divide the distance by the time taken and get the mean speed (or velocity to be pedantic).

The issue with relativistic speeds are that the clock cannot be in both point a and point b. So we need to do some fancy footwork with the maths to use one or other of the clocks. So far so good. This method will indeed never get a result > c.

The nature of space forbids it – if the Lorentz transformations that work so well are to be taken at face value, then for something to exceed c by this method of measurement, is much the same as a number exceeding infinity.

So all is still well. Until you ask, what about if the clock is the thing that travelled from a to b?

In this case, the transformations cancel! The faster the movement, the slower time goes for the clock, and you will see its ticks slow down, thus allowing its speed to exceed c.

The clock will cover the distance and appear to have tavelled at c on your own (stationary) clock, but the travelling clock will have ticked fewer times!

If you divide the distance by the time on the travelling clock, you see a speed that perfectly matches what you would expect should no limit apply. Indeed, the energy required to create the movement matches that expected from simple Newtonian mechanics.

The key point here is that while the clock travelled, the reader of the clock did not. If you do choose to travel with the clock, you will see it tick at normal speed, and see the limit apply – but see the rest of the universe magically shrink to make it so.

Some have argued that I am not comparing apples with apples, and that by using an observer in a different frame to the clock I am invalidating the logic.

To those who say that, I have to admit this is not done lightly. I have grown more confident that this inference is valid by considering questions such as the twin paradox over and over.

The twin paradox describes how one twin who travels somewhere at high speed and then returns will age less than his (or her) stationary twin.

Now if we consider a  trip to Proxima Centauri (our nearest neighbour) the transformations clearly show that if humans could bear the acceleration required (we can’t) and if we had the means to get to, say, 0.99c for most of the trip, that yes, the round-trip would take over 8 years and no laws would be broken. However the travellers themselves will experience time 7 times slower (7.089 to be precise). Thus they will have aged less than 8 years. So, once they get home and back-calculate their actual personal speed, it will exceed all the live measurements.

This has bothered me endlessly. Although taken for granted in some sci-fi books (the Enders Game saga for example) this clear ‘breakage of the c-limit’ is not discussed openly anywhere.

Still uncertain why people were ignoring this, I read a lot (fun tomes like this one) learned more maths (Riemann rules!) and also started to look at the wider implications of the assertion.

On the one hand, the implications are not dramatic, because instant interstellar communication is still clearly excluded, but that whole issue of needing a 4 years flight to get to Proxima Centauri is just wrong. If we can get closer to c we can indeed go very far into the universe, although our life stories will be strangely punctuated, just as in the Ender books.

But what about the implications for the other big festering boil on the body of theories that is physics today – quantum theory?

Well, if one is bold enough to assert that it is only measurement that is kept below c and not ‘local reality’, then one can allow for infinite speed.

In this scenario, we are saying measurement is simply mapping reality through a sort of hyperbolic lense such that infinity resembles a limit. Modelling space with hyperbolic geometry is really not as unreasonable as all that, I don’t know why we are so hung up on Euclid.

With infinite speed at our disposal, things get really interesting.

We get things like photons arriving at their destination the same tme they leave their source. Crazy of course… but is it?

Have we not heard physicists ask – how is it the photon ‘knows’ which slit is blocked in the famous double slit experiment? It knows because it was  spread out in space all the way from it’s source to it’s final point of absorption.

If you hate infinities and want to stick with Lorentz, you can equally argue that, for the photon, going exactly at c, time would stand still. Either way, the photon feels like it is everywhere en route at once.

If the photon is indeed smeared out, it probably can interfere with itself. Furthermore, it is fitting that what we see is a ‘wave’ when we try to ‘measure’ this thing.

A wave pattern is the sort of thing I would expect to see when cross sectioning something spread in time and space.

Please tell me I’m wrong so I can get back to worrying about something useful. No, don’t tell me – show me – please! 😉





Energy Drink Misinformation

11 09 2011

Zero calorie ‘energy’ drinks piss me off. Why?

A zero calorie energy drink is a flat-out contradiction. 

Think about it. What is a calorie? If you don’t know, look it up. Yes, exactly, it is a measure of… energy content! WTF?

What I want to know is this: how come we let big business redefine our language to their own greedy ends? I mean the people who make low-calorie energy drinks know they have no energy in them, so why are they called energy drinks?

I think its because energy is a misunderstood concept and they are taking advantage of this.

Understanding what energy is (and more importantly isn’t) will allow people to more accurately decide things correctly – like whether it’s a good idea to try hike 100 miles across a desert armed only with zero calorie energy drinks.

So for background, please take a look at my article on energy designed for people with too little time to read a whole book, or even a pamplet.

Now, the specific issue here is that people are confusing energy sources with stimulants. Sure, the sugary versions do actually supply some energy, but no more than a can of Coke – but these guys are not charging those absurd prices for sugar – those prices, and claims, are for the drugs. Compounds like caffeine affect our nervous system and interfere with our built-in protection systems, systems that make us feel tired after effort, mechanisms that force us to get the sleep we need in order to rest our muscles and reboot our brains.

The issue here is that the word stimulant is not as easy to sell as ‘energy’, and the English language does allow us to mix up feeling ‘energetic’ with feeling alert and ready for action.  The nerdy scientific truth issue here is that tired people actually still actually have plenty of energy (especially if they are prosperous about the middle) it is just their inclination to use that energy that changes.

So next time you feel tired but need to keep going, by all means get a ‘so-called’ energy drink but remember it is mainly just a drug. The next time you hit a wall 20 miles into a marathon, remember to get some real energy.

 

 

Postscript

So is messing with you body’s tiredness systems bad? Not necessarily! We must also resist overreacting and committing another crime – resorting to the naturalistic fallacy that messing with nature is fundamentally a bad idea. I quite like it when medical science messes with natural things like smallpox and malaria for example. Stimulants are not all bad, keeping alert can keep us safe when driving, and used in moderation can actually help us focus through tedious study or exams.




Confirmation bias: confirmed as bias.

13 08 2011

I have this theory that ‘confirmation bias’ is a load of BS, so I looked on the net and found, after careful search, some people who clearly agree with me. Most don’t, but they must be idiots.

:





Air Fresheners Exposed!

22 05 2011

Ok, so I know its not a conspiracy to take over the world, but my inner nerd has been provoked.

Have you ever wondered how air fresheners work?

Let’s take a sceptical look.

Nanobot

This cool pic is from hybridmedicalanimation.com

I’d love to think that AirWick / Glade / {insert preferred brand here} consist of an army of nano-bots that round up and deport any molecules without the right paperwork.

Although we aren’t there yet, it’s actually not too far from the truth!

Although many cheap deodorisers do simply mask the truth by overpowering our senses, I really like to give credit where credit is due, so I am happy to disclose that there are indeed certain substances that can detain odours – such as zeolites and silica gels, and there are also organic molecules that will react with a wide array or hydrocarbons rendering them odourless. These ideas are in fact used by several big brands today.

Hurrah!

But that’s not the whole story, is it?

No, because none of that really means the substance (or it’s source) is ‘gone’; all they have done is disabled our ability to detect all that foreign matter around us!

The last time I looked, our sense of smell, just like our sight and hearing, was there to help us survive – to detect when there is something unsavoury in the vicinity and force us to deal with it. If your bed or sofa stinks, you should probably take it outside and try to remove to 5 lbs of skins flakes and  other sundry bodily oozings rather than spray the bed with an extra long burst of febreze.

You wouldn’t season rotten meat in curry then serve it to your in-laws, would you?

Now, to be fair, the purveyors of these products do not intend for you to use their product to allow you to live in filth disguised with the scent of lavender, and their scientists are smart people – however, there marketing departments do need to be brought to book for giving a few misleading impressions.

The world ‘fresh’ for example is used universally. I don’t know about you, but to me this should mean clean, pure and new. It may certainly allow for some sweet floral aroma, but it certainly doesn’t include ‘complex organics we cannot smell’.

Some solutions – like Resolve carpet cleaner, where an absorbent powder is applied liberally then hoovered up, deserve a break – but, as far as I can see there are the exception – most odour control is still in the form of the old “cover up”.

What we have to remember is that in order to claim a product is ‘absorbing’ an odour, one only need prove it absorbs ‘some’ odour – not necessarily the majority and very rarely “all”. Thus it can be that it absorbs 2% of the odour and the other 98% of the odour is still there but overwhelmed by the scent of a pine forest. The same is true with biocidal deodorisers (like Lysol) which may kill bacteria – a common source of odour. These products can actually kill germs – however the impression that a quick spray will effectively sterilise is falsely reassuring.

—-

I sign off now by pointing out that the best way to avoid odours is by good hygiene, though not too good: remember that we humans co-evolved with this slimy little planet!





Does natural really = good?

8 05 2011

Don’t you hate being taken advantage of?

You don’t have to look far in supermarkets to see scientifically dubious claims on product packaging. We already know about dubious health effects of certain foods and the arms race by advertisers to come up with fancy ways to pretend their products are good for us. Now the latest trend is to crow about how ‘natural’ a product is – the world natural, is however now officially anointed a weasel word.

What exactly does it mean? We all know what they want us to think: wholesome, pure, robust, healthy; but what does natural really mean?

As the provincial scientist, I will take a scientific view: natural originally meant ‘of nature’, that is to say, real, or not-supernatural. So technically humans are natural as is all we do. Of course, the term has now been somewhat perverted, and is commonly taken to mean: not man-made.

Any decent scientist is going to have trouble with this definition because it is far too open to interpretation and begs the question: how much human involvement is required to make something non-natural?

This is the vagueness has has been unconsciously used to create a definition that helps sell products: this definition suggests somewhat arbitrarily that ‘some’ degree of purification, or ‘some’ types of blend constitute something unnatural. In addition, if the substance is not found in nature at all it is considered even worse. Sometimes the product is cast as unnatural just for having a chemical sounding name, or because it’s produced by a drug company. On the other hand, some products are branded natural despite containing preservatives, colourants and so on. We simply cannot trust food marketing.

Modern diet sodas would meet most people’s definition of synthetic: but what about bread? Milk? Where do we draw the line?

One argument says if all the ingredients are natural, then the product is natural – so, for example, beer made without recourse to ‘chemicals’ may be considered natural.

Unfortunately, this argument simply displaces the vagueness: now the question is: what constitutes a ‘chemical’? We are all chemical, after all. So yet again, chemicals are arbitrarily divided into good and bad depending whether they occur in nature. Fruit flavoured sodas rarely contain actual fruit: we learned which chemicals were responsible for apple, strawberry and banana flavours and can now synthesize them perfectly – this is done in large quantities that make it far cheaper than actually farming the fruits themselves. It is fair to say that the supply chain for these flavours is often complex, so a little skepticism is warranted, but upon inspection, it turns out that most synthetic flavours are very well understood and are often far purer than the ‘natural’ alternatives. The idea that we eat barbecued meat, smoke tobacco and drink coffee, but are afraid of Acesulfame K is somewhat irrational.

So it leads us to ask – why? Why is the devil’s brew OK, and Acesulfame K not? Why is something man-made inferior to something natural? Why have we got it in for synthetic stuff?

In the study of ethics, there is an argument called the appeal to nature used to justify actions as moral: this is an argument that basically says natural=good.

However, there is no good reason to suppose this. I propose that this fallacy is behind our fears of the synthetic and is the driving force behind major societal trends such as the organic movement, and is a mainstay in the ongoing survival of many useless alternative medicines… so I thought it deserves to be unpacked a little.

The Moral Maze

Get this shirt, click the image!

It is worth reading up on the thought experiments done to try and understand morals. See for example the trolley problem: would you push someone in front of a train to save five lives? Or consider the scene in the last episode of M*A*S*H were a mother is given the choice to smother her own child to avoid a group of villagers from being detected by enemy soldiers.

By thinking through these scenarios, and unpicking our reactions, scientists have learned that different parts of us have different reactions – there are the more emotional reactions and the more logical, reasoned reactions. The logical reactions can seem immoral, and we would struggle with guilt if we made them, but why?

Emotions like fear, revulsion, guilt and love often seem illogical – and so they often are. They we not designed, but emerged as evolutionary advantageous, thus they often seem without purpose. Thus we can have emotions that do not make logical sense; on average they help, but they do malfunction, as in the trolley problem.

Will knowing this failure of the mind help us make these hard choices by reducing the guilt? I don’t think so – we cannot escape our emotions. However, the logical approach should still be used – for example by leaders who need to create policies for the greater good. This makes me think of the famous line in A Few Good Men “You want the truth? You can’t handle the truth!”. I am suggesting that there are situations when the most moral act for a leader is immoral on the face of it and would be condemned if made public.

Thus, we see that the study of what is moral is a tricky field and we see that the systems used in society, while designed to be ethical, may often not be moral (such as a lawyer defending a suspect they know to be guilty).

So how does this tricky world apply to the question of naturalness? Well I would assert that our reaction to substances, like our reaction to the trolley car problem, is again a battle between deep evolutionary instincts and our power to reason.

Firstly, we have a natural (and wise) aversion to new things, especially foods: eating anything new increases the risk of poisoning, and so, eating things eaten for generations is safer. Synthetic foods are clearly ‘new’; they do not have grandma’s stamp of approval – we do not know if generations of people have thrived on this stuff. While this rule of thumb is a good starting point, it is obviously an emotional generalization that fails simple examination. What’s more, as our understanding of both nutrition and hygiene have massively improved health and lifespan in the last hundred years, we should actually favour the new – and fear the old!

The next argument goes something like this. We have a vague feeling that as our bodies evolved in a natural world, and the highly purified chemicals will somehow put our wonderfully complex systems out of whack. It is true that when we eat natural foods, our bodies are very adept at ‘processing’ them; and many natural foods do contain a wide array of essential and complementary nutrients, but it is unsupported speculation to suggest that our bodies needs cannot be met by more processed ingredients. Modern nutrition science understands very well what the body needs in terms of fuel, salts, roughage and so on, and we also understand how diet effects the risks of disease. While modern nutritional science does conclude that natural foods have many benefits – it does not conclude that synthetic is bad. There is room for both!

Lastly, there is an argument straight from moral philosophy: does it makes sense, for example, so say that killing someone is morally worse than failing to save someone, even though a choice is made in both cases and the outcome is effectively the same? If so, then this reveals a built-in preference for ‘non-interference’. So perhaps in a similar way, nature may be considered a ‘default’ – it’s what happens when humans are absent, ‘it’s what would happen anyway’ – like animals hunting for food – and so has a moral free pass. Following this through, nature has no immorality, morality is something tied to us humans and our choices – and so everything we do as humans is therefore potentially immoral.

This argument is also a little weak – as humans have the power to do tremendous good – and the evidence that animals do things we find immoral is there – after all, we are animals. Animals, like us have complex societies, trade favours, shun freeloaders and much more. If you want to learn more, the writings of Marc Beckoff shine a spotlight onto this.

So is there a take home?

OK, now we know – the ‘nature card’ will take advantage of our irrationality, it will stoke our fears and play with our conscience. It will manipulate how we spend our money, and it will sometimes do us more harm than good.

But what makes it worse, is that most people who draw the nature card are good people.

This is one of the many small tragedies that make up our modern times.





Reality: a hard sell

2 04 2011

I can’t help but wonder if doggedly debunking all spewings from the purveyors of woo is somewhat a fool’s errand.

There are a number of pseudo-scientific disciplines whose concepts are inherently highly attractive and contagious to the average Joe, saying things that make him feel good and making him want to pass on the good news. Think of how easy to sell these messages are:

  • organic food – frolicking chickens, steaming compost, happy farmers, healthy food – a return to basics, back to a purer time when humans actually had roots in the earth and cared for it; you too can go organic!
  • complimentary medicine – age-old wisdom, so long suppressed by big pharma is unlocked just for those open-minded enough to look. Are you open-minded! Yes? Here are your keys to healthy prosperity!
  • astrology – our fates, entwined with the universe, form a beautiful unity; enigmatic scholars have acted custodian to its cipher through the ages. Are you a spiritual soul? You too can share time’s secrets!
  • parapsychology – our minds are more powerful than science knows, and we all have potential beyond our wildest dreams! But hold on! Only those willing to break free from the trappings of conventional science will ever see the light…
  • and of course the big kahuna, religion – imagine for a minute the greatest most wonderful thing in all the world, and that is but nothing compared with the joys that await the believer, and for all eternity too!

It is little wonder the bible I had as a kid said “Good News” on the cover.

The issue is that the logical shredding of these pieces is often a sobering dose of reality that fills most people with instant sleepiness:

  • organic food is not always kinder to the planet and claimed health benefits are of the ‘hard to verify’ sort
  • alternative medicine actually does work, but only the level one would expect from getting time, care, attention and the placebo effect
  • the laws of physics do allow marvellous things (x-rays, computers, holograms) but it takes serious study to understand why they don’t allow for the positions of stars and planets to have predictable effects of the day-to-day ongoings in suburbia.
  • the mind is indeed fabulously clever and poorly understood, but those tedious laws of physics, and indeed dry, cold logic, are annoyingly sticky when it comes to clairvoyance, ESP, psychokinesis and precognition.

So YAWN! Boring!! Logic and analysis mean effort, work, thinking things through, totting up totals, cross-checking claims, testing, questioning and doubting. Pretty much the opposite of nice & easy. Accepting we are not all-powerful, we are not immortal and that we will all be forgotten someday is just no fun. These are not messages that will go viral, that will breed missionaries, that would generate a manic fervour. More like manic depression.

—–

So the deck is stacked. Pseudo-scientific ideas persist because they are tenacious memes, and they are almost impossible to kill. They are contagious and sticky, and lovely and easy, and fighting them off requires not just the will, but also the ammunition.

And that is why it worthwhile to continue to fight the good fight – to keep trying to debunk poor thinking – to provide the ammunition to that small number, those that may be on their own, surrounded by superstition, but with that gift in their heart that is that first inkling of doubt.

I will do it for those that think they are alone as I once did.

We live in a time of unprecedented opportunity – people have better access than ever to the tools to arm themselves to achieve a new sort of ideal: to make life choices with full access to all the facts. We are after all free to choose to believe anything, the problem only comes when we are not given the choice. No information, no balance, no choice.





Learning

8 11 2010

It seems to me there are three elements to a good education:
1. A stimulating environment. In such an environment, everyone will learn furiously.
2. Selection. That is to say, the ratio of useful/constructive things learned, vs useless/wrong/just plain destructive things we learn in the abovementioned stimulating environment.
3. No sugar coating. Nobody who learns only wholesome, proven, positive things will be well educated. An essential aspect of a good education is learning by error and embarrassment, loss, sorrow, breakage, cheating, lying and heartbreak.

So because an education requires fault and deception, there cannot be a perfect education, only a more or less effective one for one’s environment…